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Abstract

An efficient, approximate analysis for calculating

complete three-dimensional stress fields near regions of

geometric discontinuities in laminated composite struc-

tures is presented. An approximate three-dimensional

local analysis is used to determine the detailed local re-

sponse due to far-field stresses obtained from a global

two-dimensional analysis. The stress results from the

global analysis are used as traction boundary conditions

for the local analysis. A generalized plane deformation

assumption is made in the local analysis to reduce the so-
lution domain to two dimensions. This assumption al-

lows out-of-plane deformation to occur. The local

analysis is based on the principle of minimum comple-

mentary energy and uses statically admissible stress

functions that have an assumed through-the-thickness

distribution. Examples are presented to illustrate the ac-

curacy and computational efficiency of the local analy-
sis. Comparisons of the results of the present local

analysis with the corresponding results obtained from a
finite element analysis and from an elasticity solution are

presented. These results indicate that the present local

analysis predicts the stress field accurately. Computer

execution-times are also presented. The demonstrated

accuracy and computational efficiency of the analysis

make it well suited for parametric and design studies.

Introduction

Advanced composite materials are being used more

extensively for aircraft primary structural components.

To exploit fully the benefits of composite materials for
use in these comonents, a thorough understanding of the

corresponding response and failure characteristics of

these structures is required. Practical forms of these pri-

mary structural components have many local detail fea-

tures that cause gradients in the stresses and

displacements near these detail features. In addition,
some structural features have thickness discontinuities

that cause local three-dimensional interlaminar stress

gradients. Thickness discontinuities commonly occur at
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flange terminations in a stiffened panel, at dropped plies

or skin thickness changes, at the edges of fail-safe straps,

and at the edges of lap joints. Local interlaminar stress

gradients have been identified as being significant con-
tributors to the failure of composite structures for all

loading conditions. An example of such a failure occurs

in stiffened panels that are loaded into the postbuckling

load range.l Failure can occur for these panels when the

high local stress gradients in the interface between the

skin and the stiffener flange have stresses that exceed the

low interlaminar strength of the composite materials.

These stress gradients can cause the stiffeners to separate
from the skin.

With few exceptions, 2-6 previous analyses of lami-

nated plate structures with thickness discontinuities have

been conducted using displacement-based finite element

analyses. The large number of degrees of freedom re-

quired to obtain accurate transverse stress predictions

with this analysis method makes the use of this method
computationally expensive or even infeasible for struc-

tures of practical size and with practical structural design
details. This observation is particularly true if the analy-

sis is included in a design or structural optimization code

where analyses are performed repetitively or, if nonlinear

deformations associated with postbuckling or internal

pressure are considered.

The present paper presents an alternative approxi-
mate analysis method for determining the three-dimen-
sional interlaminar stresses at a local thickness

discontinuity in a laminated composite structure. The

analysis is limited to linear elastic material behavior and
geometrically linear deformations. The approximate

analysis method is based on stress functions and the prin-

ciple of minimum complementary energy. The method is

similar to an approximate analysis method presented by
Kassapoglou and DiNicola, 5'6 but uses the more refined

stress function assuml_tions for each layer of a laminate
that were used by Yin'for analyzing the classic free edge

problem. In addition, the present analysis includes both

the thick and the thin regions of a panel with a thickness

discontinuity as shown in Fig. 1. Only the thick region of

the panel was modeled in the previous approximate anal-
yses. 5'6 Including both the thick and thin panel regions

and the refined stress assumptions for each layer provides

a more accurate stress field prediction, and a better repre-

sentation of the load transfer between the two regions.

Furthermore, the present analysis can model general lam-
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inatesandisnotrestrictedtoorthotropic layers as are
currently available elasticity solutions. 2"3'4

The flange termination region at a skin-stiffener in-
terface is emphasized in the present paper; however, the

method can be applied or extended to other thickness dis-

continuity configurations that occur in practical compos-
ite structures. The computational efficiency of the

analysis is demonstrated by solution execution-time re-

sults, and the accuracy of the analysis is demonstrated by

comparisons of results from the present analysis with re-

suits from finite element and elasticity analyses. The re-

suits presented herein suggest that the present

approximate analysis will provide structural designers
with a computationally efficient means for assessing the

influence of structural, geometric and material parame-
ters on local three-dimensional stress fields and for de-

signing laminated composite structures with critical
local detail features.

Problem Definition and $01otion Approach

The physical problem considered has a single dis-

continuity, or change in thickness, as shown in Fig. 1. A

global-local analysis approach is used for the present
analysis to make the analysis general and applicable to a

variety of structural configurations. The global analysis

consists of a two-dimensional finite element analysis of

a structure subjected to prescribed loading and displace-
ment boundary conditions. Stress resultants obtained

from the global analysis at a point (or points) of interest

in the structure are applied as far-field traction boundary

conditions to a local analysis of the thickness discontinu-

ity region. The remainder of the present paper focuses

on the details of the local analysis.

It is assumed that the deformations in the local

analysis can be represented accurately by the assumption

of generalized plane deformations. For this class of

problems, the loading, geometric and material proper-

ties, and stresses and strains are independent of the lon-

gitudinal coordinate x (see Fig. 1 for the definition of the

coordinate system). The solution domain can therefore

be reduced to any y -z cross-sectional plane that is re-
mote from the ends of the structure where the stresses

and strains are influenced by the boundary conditions,

and a state of generalized plane deformation may not ex-
ist.

Lekhnitskii 8 investigated the class of deformations

for which the stress tensor is independent of the longitu-

dinal coordinate x, and found that the most general form
of the displacement field for this class of problems (see

page 104 of Ref. 8) is

u(x,y,z) = x(Ay+Bz+C) +U(y,z) +u"

v(x,y,z) = (-1/2)Ax2-Oxz+V(y,z) +v' (1)

w(x,y,z) = (-1/2) Bx 2+Oxy+ WO,,z) +w"

where A and B are the negative bending curvatures in

the x-y and x-z planes, respectively, C is the strain

ex at y = 0 and z = 0 and Ox is the rotation about the
x axis. The values of A, B, C and O are the same for

all layers. The functions U, V and W are unknown com-

ponents of the displacement, and u" v" and w' are rigid
body displacements.

A model of a cross-section of the structural detail

and the applied loads used in the local analysis are shown

in Fig. 2. The stress resultants N v and M v shown in Fig.

2 and the stress resultants N, M x and "Mxy are deter-
mined from the global analysis. The local solution do-

main is divided into two regions, A and B, as shown in

Fig. 2a, to account for the change in geometry at the
thickness discontinuity. Each region is assumed to be

sufficiently long in the y-direction so that the solution

provided by the global two-dimensional analysis is valid

away from the discontinuity. Independent solutions are

developed for the two regions, and inter-region continu-

ity conditions obtained from the variational statement are

used to connect the two solutions. Region A includes

both the terminated laminate (shown in Fig. 1) and the

laminate that continues into region B. Region A consists
of N layers separated by n planar interfaces. An adhe-

sive or bond layer may also be included between the con-

tinuous and terminated laminates. Region B includes

only the laminate continued from region A, and consists

of Ns layers which are separated by ns interfaces. The
thickness of the layers are represented by

h (k) = z (k - I) _ z (k) and are numbered consecutively

from the top surfaces of the laminates (see Fig. 2b).

Mathematical layers may represent individual plies that

are reinforced by a system of parallel fibers oriented at an

angle 0 with respect to the x axis or they may represent
a portion of the thickness of a ply. The layers are contin-

uous between regions. Each layer (indicated by the sub-

script k) is regarded as a homogeneous, monoclinic,

linear elastic material, defined by the following constitu-
tive relation

_el I (k)

e2 I

_31

E4 I

_51

_£6"

SII Si2 S13 0 0

Sl2 $22 $23 0 0

S13 $23 $33 0 0

0 0 0 $44 $45

0 0 0 $45 $55

SI6 $26 $36 0 0

- (k) t_ I
S16

$26 (_2

$36 _3

0 _4

0 o 5

$66 ,t_ 6

Ck)

(2)

where contracted notation has been used; e.g.,

6,.,a ,a ,lT= (3)[IJxx'lJYY'_ZZ' Y_ _ .u" [IJI'ff2'IJ3'IJ4'_5'CJ6]T

The corresponding notation is used for the strains. For

generalized plane deformation, a longitudinal strain

¢(k) can be specified. Expressing the longitudinal

stress _k) in terms of this strain and the remaining

2
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stresscomponentsgives

C_k) = I_(lk)-S_;)_(k))/S(kl ) (j=2,3,6) (4)

In Eq. (4) and the equations that follow, Cartesian tensor
summation rules are assumed unless otherwise noted.

Substituting Eq. (4) into the right-hand side of Eq. (2)

and replacing the first row by the above expression for

o_ k) gives

°1
e=[

ea[

e41

EC, J

1 -Sl2-S13 0 0 -S16

Slj Sll Sll SIj
(k)

__2 ]322 1323 0 0 _26
Sll

S1---'_3 [323 1_33 0 0 _36

SII

0 0 0 1344 1345 0

0 0 0 13451355 0

S1"'_6 [326 1_36 0 0 [366
SII

(k)

"El

0 2

O_

O 4

0 5

.0 6

(k)

(5)

where

5(k)ij = si_k) -S_) /S_;) (6)

Local Analytical Model

The principle of minimum complementary energy
is used with Lekhnitskii stress functions 8 to determine

the stresses in the local analysis. Neglecting body forces,

the complementary energy functional for a laminated

body consisting of N subvolumes (layers) with volume

V(k ) , is written in Cartesian coordinates as

N

kZll !, lS(k)O(k)O(k)ldVi2 ij j j -_zfiidSu
Hc = (7)

= V } S

In the above expression, oi(k) denotes the stresses, '_i

denotes the surface tractions, ft. denotes the prescribed
displacements, and S.(.k) denotes the compliance matrix

tj
given in Eq. (2). The superscript (k) attached to the
variables indicates that the variable is associated with

the k th layer. The displacements ffi are prescribed

along the boundary segment S u . The stress tensor o i
satisfies the equilibrium equations within each layer and
the traction continuity conditions on inter-layer bound-

aries, and it is compatible with the prescribed tractions

over the boundary segment S G . The functional

FIc must be stationary with respect to the independent
admissible variations in the stresses, and the compatibil-

ity equations are determined from the resulting Euler-

Lagrange variational equations. The first variation of

the complementary energy functional is given as

N

_I-[c =kZl= [ V!k) 21S(k)oi(k)_(k)ldVu

- | [tiS"_idS u = 0
P

S,,

(8)

The general expression in Eq. (8) is specialized to the
generalized plane deformation problem by recalling that

the stresses in all layers are independent of the axial

coordinate x. As a result, only variations of stresses

that are independent of x are considered in the analysis.
In addition, the integration in x is carried out for a unit

length. Carrying out the integration in x reduces the

volume integral in Eq. (8) to an area integral in the y - z

plane, and the surface integral to a contour integral in

the same plane. Making these simplifications, and

employing the notation in Fig. 1, Eq. (8) becomes
N

: Zc 2-i/ i _5Jo_
k) dA

k=l

A (k)

- : 0
k

(9)

where Au, Av, Aw are the differences between the dis-

placements at the ends x = 0 and x = l, and A (k)
denotes the area of the k th layer in the x = 0 plane.

The longitudinal stress component, o(k) is determined
from Eq. (4).

Layer Str¢,_ Assumptions

The structural analysis proceeds by approximating

the stresses within the layers in the two regions shown in

Fig. 2. The stress assumptions for the two regions are in-

dependent, but are identical in form. Hence, the subse-

quent discussion is developed for one region. A generic
h (k)layer in the analysis has thickness and the upper and

lower surfaces are defined by z (k - 1) and z (k), respec-

tively, as shown in Fig. 3. A local non-dimensional co-

ordinate rI = (Z-z(k))/(z(k-I)-z(k)) is defined

for the analysis. A stress field in the k th layer satisfying

the governing equilibrium equations may be expressed in
terms of a pair of stress functions 8 _(k) (y, rl) and

(k) (y, rl ) for the generalized plane deformation as-

sumption used in the present analysis such that

_2(i _ (k) 320 (k)

O(k) = 32Z 03(/0- 32y

0(4k) = 3y3z

0_ k) _(k) _(k)
- _z O(Sk) - _y
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Approximateformsforthestressfunctionsareob-
tainedbyassumingasolutionforthe stress field within a

typical layer using separation of variables9; i.e.,

(k) (y, I]) = fi (k) (y) gi (k) (rl) i = 1 ---) 6(Y

t (11)

(no sum on i)

where fi (k) (y) are unknown functions of the in-plane

variable y, and gi(k) (rl) are assumed explicit polyno-

mial shape functions of the through-the-thickness vari-

able I]. The throu_gh-the-thickness polynomial functions
presented by Yin'and by Rose and Herakovich 10 are

used in the present analysis. In these formulations,

expressions for the through-the-thickness shape func-

tions are developed by assuming that the in-plane stress

components o2(k) and o_ k) vary linearly through the
thickness of a layer in accordance with classical lamina-

tion theory. Thus, from Eq. (10), the through-the-thick-

ness shape functions for • (k) in a layer are defined by
cubic polynomials in T1, and the through-the-thickness

shape functions for _ (k) in a layer are defined by qua-

dratic polynomials in rl. The assumed polynomial

stress functions for each layer (k) used in the present

analysis are expressed as

_(k) (y, rl) = (l-3112+21]3)Fk(y) (12)

+ ('q-2rl2+rl3)h(k)Gk(y)

+ (3r13 - 2r13) Fk- I (Y)

+ (rl3-1q2)h(k)Gk-I (y)

defined by z = z (N)

z = z (°) yields

II)(1) (Z = Z (0))

_,Z (1) (Z = Z (°))

_(1) (Z = Z (°))

and the top surface defined by

(15)

= _(N)(z=z (u)) = 0

= _,Z(_ (Z = Z {_) =0

= _F(_(z=z (N)) = 0

In addition, free surface conditions are imposed along

surface AB in Fig. 2 and inter-region continuity condi-
tions are imposed along surface BC. These conditions
are outlined in the next section.

Application of the Variational Principle

The unknown functions Ft_(y) , G k(y) ,

L_k) (Y) ' and H(k ) (y) are determined by applying Eq.
(, to a generic laminate with edge boundaries at

Y = YI and y = Y2 (see Fig. 3). In the minimization
of the complementary energy, the second and third terms

in Eq. (9) contribute only to the particular solutions of
the unknown functions. Therefore, these terms are

dropped in the formulation of the complementary solu-

tion. Substituting for the stresses in terms of the stress

functions in the first term in Eq. (9) and integrating by

parts with respect to y yields

N

h(k) -]"2
]_ J0 Jr, { (I]22tl),zz + _J23_,yy + [_26tIJ,z ) _t_,zz

k=l

+ (fJ23t_yyzz + _33t_,yyyy + _36utJ,yyz) _)ty_

W (k)(y,l]) = (1-1]2)Lk(y) (13)

+ O]2)Lk_l (Y) + Q]-lq2)h(k)Hk(Y )

where F k (y) , G k (y) ,L k (y) and H k (y) are unknown
functions of the in-plane variable y.

In addition to satisfying the equilibrium equations

within a layer, the stresses must satisfy the traction con-
tinuity conditions between layers, and the surface bound-

ary conditions. Continuity of the interlaminar normal

stress and the interlaminar shearing stresses at the k th in-

terface z = z (k) requires that along the interface

(I_(k+l) _- (I)(k) tl),Z (k+l) = (I),7, (k)
(14)

_ytt(k+l) = _(k)

Free surface conditions are also imposed along the top

and bottom surfaces of the laminates. For pressure-

loaded panels, these surfaces may be exposed to normal

pressure tractions. However, the magnitude of the pres-
sure load should be small relative to the stresses that

develop within the material, and it is ignored in the anal-

ysis. Imposing the free surface conditions at the top and
bottom surfaces of a laminate with the bottom surface

- (_44t_,yyz + _45tla,yy) a(l:_ z

-- (_ 45 dP yyz + _55tIJ,yy) atI a

+ ([_26_,zz + _36di),yy + _66t_,z ) at[J,z } (dydz)

N

[h ( k)
+ Z a 0 { ([_23(I_,zz + _'133t_,yy + _36tI'J,z) atl),y

k=l

-(_23_,yzz + _33 _,yyy + [336W,y z) _

+ (_44¢_,yz + 1345_I',y) a'_z

Y2

+ (_45tl),y z + _55W y) _W } dzlr_

=0
(16)

In Eq. (16) the superscripts (k) have been dropped for

conciseness and a comma denotes partial differentiation.

The double integral in Eq. (16) contains the compatibil-

ity equations associated with the variations in the stress

tensor, and the remaining terms in the equation are the

continuity conditions between the regions. Equation
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(16)canbeexpressedintermsofthe3nunknownfunc-
tions F k(y),G k(y) and L k(y) and the n+l

unknown functions H k(y) by substituting the stress
function assumptions of Eqs. (12) and (13) into Eq. (16)
and integrating through the thickness of the laminate.

Since explicit piecewise continuous functions have been

assumed for the through-the-thickness variations of the

stresses, the through-the-thickness integration is per-

formed by summing the individual layer integrals in
z (k). Carrying out these manipulations gives

I_21 {X} T([W] d4-+ [ V] z---_,2+d2 [U]]{SX}dy (17)
dy 4 dy

([ d3 j2 d 1 Y2
+ {YiT Play3+ [Ql._y2+ [RI_y+[SI {sr}lr,

=0

where the vectors {X} and { Y} have the form

YI = FI

{Y}=

X 1 = F 1

X n = F n

Xn+ 1 = G I

X2n = G n

{x}='
X2n + 1 = LI

X3n = L n

X3n + I = HI

X3n + N = HN

Yn "_ Fn

Yn+l = GI

Y2ll _ an

Y2n + 1 = L1

Y3n+N = HN

Y3n+N+_= W

_F
rl

=

c3G_

Y4.+:,÷I= W

bG
?I

=

Solution Approach

The matrices [ U] , [ V] , and [ W]

(18)

in Eq. (17)

have elements that are real-valued constants and are de-

termined by evaluating the double integral term in Eq.
(16). The matrices [P], [Q], [R],and [S] are ob-

tained from the other terms in Eq. (16). The individual

components of these matrices have been determined us-

ing the symbolic manipulation computer code MACSY-

MA.I 1 These components are extremely lengthy and are

not presented. Satisfying Eq. (17) for the arbitrary vari-

ations 8F k, fiG k , 8L k and DH k yields a system of lin-
ear, ordinary differential equations with respect to y
with constant coefficients

d 4 d 2
U] ) {X} (19)([Wld-7+ IV] [ = {0}

with the boundary conditions

d-7+ [Q] [RI = {0}

(20)

There is one set of Eqs. (19) for region A, shown in Fig.
2, and another set for region B. Thus, solutions are

obtained for each region as described below, and the

solutions are connected by the inter-region continuity

conditions that are obtained from Eq. (20). (The inter-
region continuity conditions are discussed in more detail

subsequently). The solution to the homogeneous set of

Eqs. (19) is obtained by letting

{X} = {_}e _') (21)

where, for convenience, the following transformations

are introduced for the width coordinate y

5' = y-b for y > b
(22)

5: = b-y for y < b

The vertex at y = b (Fig. 2b) is then defined by 5' = 0,

in both regions, and _ is always positive. Substitution
of Eq. (21) into the homogeneous differential equations

leads to the eigenvalue problem

[W]L 4+ [V]X 2+ [U] = 0 (23)

which can be written in the standard form

1
[D] {q)} = _{{p}

A_
(24)

where [D] is an unsymmetric matrix given by

= -l
[D]=[Co]_I[Cl ] F[U] [0]'] F[V]

k[O] [l]j L-[Z] [o]
(25)

The matrices [ C 0] and [ C I ] have dimension 6n + 1
by 6n +1, and the matrices [U] and IV] have

dimension 4n + 1 by 4n + 1. The matrix [ W] , which
is associated with the coefficient matrix [W] of the
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operator d4/dy 4 , has dimension 2n by 4n + 1 and has

nonzero elements only in the top 2n by 2n submatrix

(in rows and columns corresponding to the functions F k
and G k ). The zero matrices [0] have dimension 2n
by 4n + 1 and the identity matrices [/] have dimen-

sion 2n by 2n.

The eigenvalue problem has been solved by the
highly efficient combination shift QZ algorithm. 12 For a

general laminate, there is a total of 6n + 1 eigenvalues
),2 ; thus there are 6n + 1 pairs of eigenvalues _,, that

are either real or complex. One component of the pair
has a positive real part and the other component of the

pair has a negative real part. For the case of a cross-ply

laminate, the elastic compliance coefficients _26' 1336

and 1345 and Si6 are zero in all layers, and the system of
equations (Eq. (19)) decouples into two systems of equa-
tions for the stress functions _ and W. The system as-

sociated with _ determines the solution for the in-plane

problem (plane strain), and the system associated with

W determines the solution for a twisting load. The so-
lution spaces for the eigenvalue problems associated

with these two systems have dimension 8n and 4n + 2,

respectively. Eigenvectors associated with the eigenval-

ues are determined from the homogeneous form of Eq.

(19). The total solution is obtained as a superposition of

the eigenvectors multiplied by generalized coordinates

(complementary solution) plus a particular solution. A

particular solution to Eq. (19) can be obtained by assum-
ing {X(y) } is constant. A particular solution was ob-

tained from the far-field classical lamination theory

stresses, and is outlined in the Appendix.

As mentioned previously, the stiffened panel prob-

lem is solved by dividing the structure into two regions.
If independent stress functions are assumed for the two

regions, two uncoupled eigenvalue problems are ob-

tained when the principle of minimum complementary

energy is applied. There are n interfaces in region A

and, for a general laminate, 6n + 1 pairs of eigenvalues
contribute to the solution. There are n interfaces in re-

$

gion B and hence 6n s + 1 pairs ofeigenvalues. Express-
ing the solutions in these regions in terms of the

eigenvectors and the particular solutions gives

6n+l

{xa} = 2 ai{_i }e_'i_+ {X_}

i=1

6n s + I (26)

{xb} = Z bj {xj}ef_r _'+ {Xp b}

j=l

where the superscripts a and b denote the regions, and

the subscript p denotes the particular solution. In the

expansions in Eq. (26), only negative eigenvalues are

considered since local coordinates _ have been estab-

lished with their origins at the thickness discontinuity

vertex, and stresses decay with distance from this point.
The local coordinates were chosen in this manner to

avoid potential numerical overflow problems associated

with the evaluation of positive exponential functions.

The constants a i and b i are determined by imposing
the free edge conditions along the flange edge AB and at

the vertex B, and the inter-region continuity conditions
along BC (see Fig. 2). The free-surface conditions

require

{ya(), =0)} = 0 k = 1--_nf (27)

where n t. = n - n . The continuity conditions between
the regions are s

{Ya(S'=O)} = {Yb(5,=O)}

Pla-_+[a]a-_-+[R] +[sl {ra(_--O)t

[ d 3 d 2 d )b= P]_y3+IQ]_y2+[R]-_y+IS] {Yb(s'=O)}

k = n 1+f"* ns (28)

Results

The approximate analytical solution presented
above has been implemented in a FORTRAN code for

general laminates. Input to the local analysis program
is simple and concise, and includes loading conditions, a

description of the geometry, stacking sequence informa-

tion, and ply material properties. Plies or layers may

have different thicknesses and they may be of different

materials. The loading conditions for the local analysis
are far-field in-plane stresses that are determined from

classical lamination theory based on force and moment

resultants obtained from a global analysis. Output from

the code includes the eigenvalues, eigenfunctions, and

constants in the eigenfunction expansion. Once the

eigenvalues, the eigenfunctions and the constants in the

eigenfunction expansion are determined, transverse and

through-the-thickness stress distributions can be easily

obtained at any specified location.

Results are presented for two examples. The accu-

racy of the present analysis of the first example is as-

sessed by comparing the present analysis results with
results from an elasticity solution 2"3and results from a fi-

nite element analysis. Computer execution times are

also presented for this example. Further, a brief discus-

sion of the influence of the modeling detail used in the

present analysis on the interlaminar stress predictions is

presented. The second example illustrates the breadth of
information that can be obtained from the present analy-

sis. Stress contour plots, and transverse and through-the-
thickness stress distributions near the thickness disconti-

nuity are presented. The interaction between the

through-the-thickness and the transverse stress gradients

in a region near the thickness discontinuity is also dis-
cussed.
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Orthotropi¢ Skin and Flange Plates

The first example application of the analysis is a

stiffened graphite-epoxy plate subjected to pure bending

by a moment My applied about the x-axis. The stiffener
flange is a rectangular, 8-ply quasi-isotropic

[+45/0/90] s laminated plate as indicated in the upper
sketch of Fig. 4. The skin is an 8-ply orthotropic

[+45/902] _ laminated plate that is also rectangular, but
is wider thafi the flange. Each ply in both the flange and

skin plates has a uniform thickness t (/) = 0.005 in. and

moduli in the planes of elastic symmetry given by

Ell = 20 msi E22 = E33 = 2.1 msi

GI2 = G13 = G23 = 0.85 msi (29)

v12 = vi3 = v23 = 0.21

where 1, 2, and 3 refer to fiber, transverse, and thickness

directions, respectively. To consistently compare results

of the present solution with results of an elasticity solu-
tion, 2'3 each of the laminates is replaced by an equivalent

homogeneous orthotropic plate with smeared compli-

ances obtained from the respective [A] extensional

stiffness matrices (see Table 1). The present analysis,

however, is not subjected to this limitation; that is, it is

possible to model each layer separately. Furthermore,

the layers may be monoclinic, and are not limited to spe-

cially orthotropic layers.

Typical results for the interlaminar shear stress .ffyz
and the interlaminar normal stress t_zz along the skin-
stiffener interface obtained from the present analysis,

from an elasticity solution and from a finite element anal-

ysis of the stiffened plate are shown in Figs. 4a and 4b, re-

spectively. The interlaminar shear stress t_xz for this
problem is zero valued, as a result of the uncoupling of

the in-plane problem from the torsion problem for spe-

cially orthotropic material systems. The elasticity solu-

tion is a tedious solution based on complex-variable

respresentations of the stress functions and a boundary
collocation method. 2 The finite element analysis was

conducted using the displacement based finite element
code CLFE2D. 13 The code CLFE2D was developed for

analyzing two-dimensional generalized plane deforma-

tion boundary value problems. Thus, only a cross-sec-

tion of the stiffened plate was modeled in the finite

element analysis. The finite element model of the thick-
ness discontinuity region used in the present study has

4033 nodes distributed over 1.5 inches of length. Re-

sults from the analytical model presented herein were

obtained using 16 layers to model each of the skin and

flange plates, and yields a total of 187 eigenvalues in the

thick region (region A), and 91 eigenvalues in the thin

region (region B). The stresses shown in Figs. 4a and 4b

are normalized by Myt/21 and are plotted as a function
of the normalized dlsiance ) = y/t s from the flange

termination vertex, where My, ts and / denote the ap-
plied moment, the skin plate thickness, and the moment

of inertia of the skin plate, respectively. The solid lines

correspond to the present analysis, the dashed lines cor-

respond to the elasticity analysis, and the symbols corre-

spond to the finite element analysis.

The finite element predictions shown in Fig. 4 are

discontinuous at the flange-skin interface, and cannot be

obtained exactly at the interface without interpolation.

Therefore, to provide the most accurate stress data, finite

element predictions are plotted for Gauss point locations

in the flange and skin plates, just above and below the in-

terface, respectively. Only one value is given for the in-

terface data computed by the elasticity solution and the

present analysis, since these analyses satisfy stress con-

tinuity across the interface. As the figures indicate, the
interlaminar normal stress predictions of all three meth-

ods agree very well. The shear stress predictions of the

current method and the elasticity solution also agree

very well, but there is some discrepancy in the finite el-

ement predictions near the vertex of the thickness dis-

continuity. The correlation between the finite element

results, and the present analysis results and the elasticity
solution is expected to improve as the finite element
mesh is refined. In addition, the results indicate that a

significant boundary layer is present in the region near

the thickness discontinuity.

Cohen and Hyer 2'3 have indicated that it is possible

for elastic singularities to exist at the thickness disconti-

nuity vertex. The current analysis does not include a sin-

gularity explicitly in the formulation. However, singular

TABLE 1. Smeared Elastic Properties for Flange and Skin Plates

Laminate
E x Ey E z Gxz Gyz Gxy Vxz Vy z Vxy

(msi) (msi) (msi) (msi) (msi) (msi) (msi) (msi) (msi)

Flange [+_45/0/90] s 8.05

Skin [+45/902] s 3.83

8.05 2.16 0.85 0.85 3.09 0.164 0.164 0.303

11.71 3.83 0.85 0.85 3.09 0.176 0.107 0.201
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behaviorispredictedbythepresentanalysis.Thesingu-
larbehaviorbecomesapparentfortheexampleproblem
byincreasingthenumberof mathematicalsubdivisions
usedtomodeltheflangeandskinplates.Theinterlami-
narshearandnormalstresspredictionsalongtheskin-
stiffenerinterfaceareshowninFigs.5aand5b,respec-
tively,forsolutionswhere4,8and16equalthicknesssu-
blayersareusedto modeleachof theflangeandskin
plates.Thesolidlinescorrespondtothe4-layermodel,
thedashedlinescorrespondto the8-layermodel,the
dashed-dottedlinescorrespondtothe16-layermodel,and
thecircularsymbolscorrespondtoanelasticitysolution.
Thepresentanalysisresultsbasedonthe16-layermodel
agreemorecloselywiththeexactelasticitysolutioninthe
verylocalneighborhoodof theflangeterminationat
y = 0 than with the corresponding results based on 8-

layer and 4-layer models. This observation is particularly
true for the interlaminar shear stress _ results. The in-

yz
terlaminar shear stress is equal to its prescribed value of
zero along y = 0 for all of the discretization levels

shown in Fig. 5. Very steep gradients are encountered in
the transverse interlaminar shear stress distribution as the

flange termination vertex is approached. As the number

of layers in the analytical model increases, the predicted
maximum stress increases, and the location of this maxi-

mum stress shifts toward the vertex at 5' = 0, thereby ap-
proaching the elasticity solution. The interlaminar

normal stress, in contrast, is not prescribed along _ = 0

but is singular at the vertex, and the predicted stress at this

point increases monotonically as the number of mathe-

matical layers in the model increases. However, the

present analysis results away from the vertex are nearly
identical for all of the discretization levels that are shown.

A similar observation is made for the interlaminar shear

stress. These observations are significant from a design
perspective, in that depending on the design and failure

criteria used in conjunction with the stress analysis, the

results based on the 4-layer model may be as adequate for

predicting failure as the results based on the 16-layer

model, and the 4-layer model takes much less time to ex-

ecute. Execution times recorded on a Personal Iris 4D/

35 Workstation for models based on five through-the-
thickness discretizations are provided in Table 2. These

execution times indicate that doubling the number of lay-

ers in the analytical model increases the run time by an
order of magnitude.

Another method for improving solution accuracy,

while keeping computer execution times as low as possi-

ble, is to adjust the relative thicknesses of the sublayers
used to model the plates rather than increasing the num-

ber of sublayers used. 14 This approach is basically

equivalent to mesh refinement. Thick layers can be used

for the regions away from the skin-flange interface, and
an increased number of thin layers is used near the inter-

face where the gradients are the most pronounced. Inter-

laminar shear stresses along the skin-stiffener interface

are shown in Fig 6. These results were obtained from a

model in which the flange and skin plates are represented
by two mathematical sublayers. Stress predictions are

presented in Fig. 6 as a function of the ratio t I/t2, where
t 1 is the thickness of the mathematical layer used to

model a portion of the flange or skin plate adjacent to the

skin-stiffener interface, and t2 is the thickness of the
mathematical layer used to model the remaining thick-
ness of the plate. As the thickness of the layer adjacent
to the skin-stiffener interface is reduced, the results for

from the present analysis approach the elasticity so-
lution. Similar trends have been found for the corre-

sponding interlaminar normal stress t_zz results.

Isotropic Plates Subiected to Uniform Extension

The second example is the analysis of a stiffened

aluminum skin panel subjected to an extensional load

Ny applied to the skin panel The configuration of the

stiffened skin is the same as for the previous example.
Both the flange and the skin are 0.04 inches thick and

have a modulus of elasticity E = 10xl06 psi and a

Poisson's ratio v = 0.30. There is no material-property

mismatch between the flange and skin plates. Therefore,

TABLE 2. Execution Times for Five Through-the-Thickness Discretizations

Number of

layers
Total number Number of skin t (k) Time

of eigenvalues plate (inches) (cpu seconds)
eigenvalues

4 43 19 0.010 2.21

5 55 25 0.008 3.82

8 91 43 0.005 11.7

10 115 55 0.004 26.0

16 187 91 0.002 100
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this example shows the effect of the geometric disconti-

nuity at the flange termination on the stress field, and

provides a simple case for studying the interactions be-

tween the transverse and through-the-thickness gradients

in the stress field near the thickness discontinuity.

Distributions of the interlaminar shear stress _ z
and the interlaminar normal stress _ obtained from t_e

ZZ

present analysis are shown in Fig. 7. The stress compo-

nents _x_, and Oxz are zero for this loading condition
and material system. Stresses are normalized by the

skin-panel far-field stress _ . There is a stress concen-
)).

tration at the flange termination point, where the stresses

have a lobe-shaped distribution near the corner of the

flange. Large through-the-thickness gradients and in-

plane gradients in both Oyz and _zz are observed near
the flange termination point (Y = 0). Away from the

flange termination point, the interlaminar stresses are

equal to zero.

The through-the-thickness and in-plane gradients

of the stress components, and their interactions, are
shown explicitly by plots of the stress distributions along

the lines z/t s = 0.0, z/t s = -0.025 and
z/t s = -0.098 shown in Fig. 8 by curves A-A, B-B and

C-C, respectively, and at y/t s = 0.022 (section D-D),
shown in Fig. 9. When the flange termination region is

approached in the direction y, gradients in c develop,
as shown in Fig. 8, as load is transferred froYmy the stiff-

ened to the unstiffened plate regions. These transverse

gradients in a are equilibrated by steep through-the-
thickness gra_Ynts in _ , as shown in Fig. 9. The

through-the-thickness _yYZdistribution is self-equilibrat-
ing; that is, it integrates to zero through the thickness (its
resultant force is zero valued). A through-the-thickness

distribution of the interlaminar normal stress _zz is also

shown in Fig. 9. The interlaminar normal stress azz
changes sign abruptly as the flange-skin interface is ap-

proached; it changes from compression in the flange to
tension in the skin. There is also a local variation in the

stress distribution as the thickness discontinuity is ap-

proached. This local variation is consistent with the con-

tour plots in Fig. 7 and is caused by the different rates of

change of ay z with changes in y at different locations
through the thickness of the corner region.

Concluding Remarks

A geometrically linear approximate analysis meth-

od for predicting complete three-dimensional stress
fields in laminated composite structures with local thick-

ness discontinuities has been presented. The analysis

method uses stresses obtained from a global two-dimen-

sional analysis as traction boundary conditions for a local

approximate three-dimensional analysis to determine

stresses in regions with local thickness discontinuities.

The analysis assumes that a state of generalized plane de-

formation exists. The approximate local analysis is
based on the principle of minimum complementary ener-

gy and uses stress functions with assumed through-the-
thickness functional dependence. Input to the local anal-

ysis is simple and concise, and includes loading condi-

tions obtained from the global analysis, a description of

the geometry, stacking sequence information, and ply

material properties. Interfacial and through-the-thick-

ness stress distributions are easily obtained at any speci-

fied location, and are not limited to the stiffener-flange
interface or interfaces between plies.

The present analysis method has been applied here-

in to determine the stresses in the flange termination re-

gions of a stiffened laminated composite plate and a

stiffened aluminum plate subjected to simple bending

and transverse extension loading conditions, respective-

ly. Stress predictions from the present analysis have

been compared with corresponding finite element results

and results from an elasticity solution, and shown to

agree very well. The correlation is shown to improve as

the number of layers used in the analytical model is in-
creased. Furthermore, it has been demonstrated that, al-

though the analysis model does not explicitly include a

singularity, a singularity appears in the predictions as in-

creasing stresses at the flange-skin interface with in-

creasing number of layers in the analytical model. In
addition, changing the relative thicknesses of the mathe-

matical layers used to model the skin and flange ele-
ments of a stiffened plate was shown to provide a

modeling discretization approach for improving stress

predictions without increasing the number of layers and

the computational requirements. The computational ef-

ficiency and accuracy of the method make it well suited

for use in preliminary design and optimization studies of
advanced composite structures with local structural de-
tails.
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Aooendix

Elements of particular solution veCtgrs

The particular solutions for F k and G k in the
flange plate are obtained by solving the system of equa-
tions:

6 2h (l) 0 0

-6 -4h (I) 0 0

-6 4h(2) 6 2h(2)

6 -2h (2) -6 --4h (2)

6(1)2b (h(I))262(2) (h (2)) 2

= 2.

)(a(",))2

'F]

F 2

" G 2

i
5p

(30)

where the subscripts t and b denote the top and bottom
of a layer, respectively, the tilde denotes classical lami-

nation theory stresses, and n. is the number of layers in

the flange plate. The particu/ar solutions for L k and H k

in the flange plate are obtained by solving the system of
equations:

-2-h (1) 0 0

0 1 0 0 ..

2 0 -2-h(2) . .

0 0 0 I . .

/G2)h 2)

= _2) h (2)I
- (hi) h (n/) J
06b

"L 1

HI

L 2

nf" p

(31)

The particular solutions in the skin plate are given m
Eqs. (32) and (33).
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-6 4h (N-l) 6 2h (N-I)

.. 6-2h (N-l) -6-4h (N-l)

• . 0 0 -6 4h (N)

• . 0 0 6 -2h(n)

=(n,- I) (h(O_l))2°2t

_b,-1 ) (h (N- 1)) 2

_(n) 2
2t' (h (N))

2 -h (N- I) -2 0

.0 0 0 1

• 0 0 2 -h (N3

.0 0 0 1

_ ( ns) h ( N)
6t

_ (ns) h ( N)
6b

F 1

Fn - 1

Gn,- 1

Fn_ I

• G J
ns p

Lj _- 1

H
s--I

' _t1 s

ns p

(32)

(33)
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Figure 1. Panel with thickness discontinuity.
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Figure 2. Cross-section model and applied loads.
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Figure 4. Comparison of interlaminar stress distributions along the skin-stiffener interface predicted by
the present analysis, an elasticity solution, and a finite element analysis.
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Figure 5. Interlaminar stress distributions calculated from an elasticity solution
and the present analysis using three through-the-thickness refinements.
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Figure 8. Distribution of transverse in-plane stress at three through-the-thickness

locations of a stiffened aluminum panel subjected to an in-plane skin load Ny.
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Figure 9. Through-the-thickness interlaminar shear and normal stress distributions at section

(D-D) of a stiffened aluminum panel subjected to an in-plane skin load N r
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